

FOULING RESISTANCES FOR HEAT TRANSFER EQUIPMENT

DEP 20.21.00.31-Gen.

December 1998

DESIGN AND ENGINEERING PRACTICE

This document is confidential. Neither the whole nor any part of this document may be disclosed to any third party without the prior written consent of Shell International Oil Products B.V. and Shell International Exploration and Production B.V., The Hague, The Netherlands. The copyright of this document is vested in these companies. All rights reserved. Neither the whole nor any part of this document may be reproduced, stored in any retrieval system or transmitted in any form or by any

means (electronic, mechanical, reprographic, recording or otherwise) without the prior written consent of the copyright owners.

PREFACE

DEP (Design and Engineering Practice) publications reflect the views, at the time of publication, of:

Shell International Oil Products B.V. (SIOP)
and
Shell International Exploration and Production B.V. (SIEP)
and
Shell International Chemicals B.V. (SIC)
The Hague, The Netherlands,
and other Service Companies.

They are based on the experience acquired during their involvement with the design, construction, operation and maintenance of processing units and facilities, and they are supplemented with the experience of Group Operating companies. Where appropriate they are based on, or reference is made to, national and international standards and codes of practice.

The objective is to set the recommended standard for good design and engineering practice applied by Group companies operating an oil refinery, gas handling installation, chemical plant, oil and gas production facility, or any other such facility, and thereby to achieve maximum technical and economic benefit from standardization.

The information set forth in these publications is provided to users for their consideration and decision to implement. This is of particular importance where DEPs may not cover every requirement or diversity of condition at each locality. The system of DEPs is expected to be sufficiently flexible to allow individual operating companies to adapt the information set forth in DEPs to their own environment and requirements.

When Contractors or Manufacturers/Suppliers use DEPs they shall be solely responsible for the quality of work and the attainment of the required design and engineering standards. In particular, for those requirements not specifically covered, the Principal will expect them to follow those design and engineering practices which will achieve the same level of integrity as reflected in the DEPs. If in doubt, the Contractor or Manufacturer/Supplier shall, without detracting from his own responsibility, consult the Principal or its technical advisor.

The right to use DEPs is granted by SIOP, SIEP or SIC, in most cases under Service Agreements primarily with companies of the Royal Dutch/Shell Group and other companies receiving technical advice and services from SIOP, SIEP or SIC. Consequently, three categories of users of DEPs can be distinguished:

- 1) Operating companies having a Service Agreement with SIOP, SIEP, SIC or other Service Company. The use of DEPs by these Operating companies is subject in all respects to the terms and conditions of the relevant Service Agreement.
- 2) Other parties who are authorized to use DEPs subject to appropriate contractual arrangements.
- 3) Contractors/subcontractors and Manufacturers/Suppliers under a contract with users referred to under 1) or 2) which requires that tenders for projects, materials supplied or - generally - work performed on behalf of the said users comply with the relevant standards.

Subject to any particular terms and conditions as may be set forth in specific agreements with users, SIOP, SIEP and SIC disclaim any liability of whatsoever nature for any damage (including injury or death) suffered by any company or person whomsoever as a result of or in connection with the use, application or implementation of any DEP, combination of DEPs or any part thereof. The benefit of this disclaimer shall inure in all respects to SIOP, SIEP, SIC and/or any company affiliated to these companies that may issue DEPs or require the use of DEPs.

Without prejudice to any specific terms in respect of confidentiality under relevant contractual arrangements, DEPs shall not, without the prior written consent of SIOP and SIEP, be disclosed by users to any company or person whomsoever and the DEPs shall be used exclusively for the purpose for which they have been provided to the user. They shall be returned after use, including any copies which shall only be made by users with the express prior written consent of SIOP and SIEP. The copyright of DEPs vests in SIOP and SIEP. Users shall arrange for DEPs to be held in safe custody and SIOP or SIEP may at any time require information satisfactory to them in order to ascertain how users implement this requirement.

All administrative queries should be directed to the DEP Administrator in SIOP.

NOTE: In addition to DEP publications there are Standard Specifications and Draft DEPs for Development (DDDs). DDDs generally introduce new procedures or techniques that will probably need updating as further experience develops during their use. The above requirements for distribution and use of DEPs are also applicable to Standard Specifications and DDDs. Standard Specifications and DDDs will gradually be replaced by DEPs.

TABLE OF CONTENTS

1.	INTRODUCTION	4
1.1	SCOPE	4
1.2	DISTRIBUTION, INTENDED USE AND REGULATORY CONSIDERATIONS	4
1.3	DEFINITIONS	4
1.4	CROSS-REFERENCES	5
1.5	SUMMARY OF MAIN CHANGES	5
2.	APPLICABILITY AND BASIS OF THE DATA	6
2.1	APPLICABILITY OF DATA	6
2.2	BASIS OF DATA.....	6
3.	APPLICATION OF LOWER FOULING RESISTANCES	7
4.	FOULING RESISTANCE TABLES	8
5.	REFERENCES	33

APPENDICES

APPENDIX 1	COOLING WATER DATA.....	34
------------	-------------------------	----

1. INTRODUCTION

1.1 SCOPE

This DEP specifies requirements and gives recommendations for establishing fouling resistance values for new unfired heat transfer equipment. It may also be used as a common basis for comparison of measured fouling rates.

The fouling-resistance values given are based on average process conditions but shall be interpreted with judgement.

This DEP is a revision of the DEP of the same number dated April 1981; a *summary of the main changes is given in (1.5).*

1.2 DISTRIBUTION, INTENDED USE AND REGULATORY CONSIDERATIONS

Unless otherwise authorised by SIOP and SIEP, the distribution of this DEP is confined to companies forming part of the Royal Dutch/Shell Group or managed by a Group company, and to Contractors and Manufacturers/Suppliers nominated by them (i.e. the distribution code is "F" as defined in DEP 00.00.05.05-Gen.).

This DEP is intended for use in oil refineries, chemical plants, gas plants, exploration and production facilities and supply/marketing installations.

If national and/or local regulations exist in which some of the requirements are more stringent than in this DEP, the Contractor shall determine by careful scrutiny which of the requirements are the more stringent and which combination of requirements will be acceptable as regards safety, economic and legal aspects. In all cases the Contractor shall inform the Principal of any deviation from the requirements of this document which is considered to be necessary in order to comply with national and/or local regulations. The Principal may then negotiate with the authorities concerned with the object of obtaining agreement to follow this DEP as closely as possible.

1.3 DEFINITIONS

1.3.1 General definitions

The **Contractor** is the party which carries out all or part of the design, engineering, procurement, construction, commissioning or management of a project, or operation or maintenance of a facility. The Principal may undertake all or part of the duties of the Contractor.

The **Manufacturer/Supplier** is the party which manufactures or supplies equipment and services to perform the duties specified by the Contractor.

The **Principal** is the party which initiates the project and ultimately pays for its design and construction. The Principal will generally specify the technical requirements. The Principal may also include an agent or consultant authorised to act for, and on behalf of, the Principal.

The word **shall** indicates a requirement.

The word **should** indicates a recommendation.

1.3.2 Specific definitions

Fouling resistance a measure of the ultimate additional resistance to heat transfer caused by deposits on and corrosion of the heat transfer material surface. The fouling resistance depends on the type of fluid, the heat-transfer surface material, the temperature conditions, the flow velocities and the operating period between two successive cleaning actions.

Fouling coefficient the reciprocal of the fouling resistance.

NOTE: The use of the fouling coefficient has generally been abandoned, since it tends to be confusing that an increase in fouling results in a decrease in the fouling coefficient.

1.4 CROSS-REFERENCES

Where cross-references to other parts of this DEP are made, the referenced section number is shown in brackets. Other documents referenced in this DEP are listed in (5).

1.5 SUMMARY OF MAIN CHANGES

A summary of the main, non-editorial, changes since the last revision of this DEP are as follows:

Section	Description
2.3	Explains the types of heat exchangers for which the listed fouling resistances apply
3.	Recommended cooling water velocity now varies depending on tube material
5.	Values of fouling coefficient have been removed (explained in the definition in 1.3.2) Table 4 - amended for cracked residues Table 20 - more fluids included Table 21 - new table for LNG plants
Appendix 1	Frictional pressure drops included for cooling water

2. APPLICABILITY AND BASIS OF THE DATA

2.1 APPLICABILITY OF DATA

Fouling resistance values apply for shell and tube heat exchangers for both shell-side and tube-side fluids as well as for fluids flowing on tube side of air-cooled heat exchangers.

Other types of heat exchangers, non tubular, are not normally designed with these fouling resistance values.

2.2 BASIS OF DATA

The values given in (4) are the result of experience and common practice. Tables 1 to 21 are grouped by type of processing unit, since it is impossible to make a proper evaluation of all variables which affect fouling. Table 22 gives values for water and steam.

The values given are based on the assumption that flow velocities, temperature and fluid conditions are comparable in similar units.

The listed values generally do not take into account:

- a) the effect of shell-side or tube-side flow;
- b) the effect of flow velocities;
- c) temperature limitations.

- a) For products containing sediments, cracked products and other unstable materials containing for example polymers, tube-side flow is preferred. Fouling is more pronounced on the shell side of heat exchangers than on the tube-side flow because of dead corners and the effect of bundle bypassing. Therefore for these products the values given are for tube-side flows only, if not otherwise stated.
- b) *Flow velocities of fluids should be chosen as high as compatible with process requirements and acceptable power consumption, having regard to the effect of erosion and corrosion caused by this velocity. This may be aggravated by the presence of sediments. For tube-side flow the velocity should be not less than 1.0 m/s; for shell-side flow the effective velocity (taking due account of bypass streams) should be not less than 0.5 m/s.

Shell-side velocities can often be improved by the installation of more shells in series.

For cooling water the preferred tube-side flow velocity depends on the tube material as shown in Appendix 1. The minimum allowed velocities are also given in Appendix 1.

- c) *For cooling water, either from a cooling tower or a once-through system, the maximum water-side skin temperature in clean condition shall be not higher than 52 °C (in view of increased fouling tendency), unless otherwise specified.

* For those exchangers where definite restrictions are applicable with regard to maximum or minimum skin temperature and minimum or maximum flow velocity, this shall to be specified in the applicable process specification and data/requisition sheets.

3. APPLICATION OF LOWER FOULING RESISTANCES

Lower fouling resistances may be appropriate if one or more of the circumstances described below apply. However, such lower values may be applied only where specifically approved by the Principal.

- In services where the surface requirements are significantly influenced by the degree of fouling, it may be advantageous to specify a lower resistance if a reduced period between two successive shutdowns is feasible. This can be achieved for instance by the installation of a spare exchanger in parallel with the one in operation, thus enabling cleaning at any time without plant shutdown. This is especially important where controllability/stability is influenced by fouling, e.g. in thermo-syphon reboilers.
- The maximum allowable pressure drop generally limits the fluid velocity. This means that for designs where low pressure drops have to be applied the fluid velocities will often become low. When the specified fouling resistance is high, resulting in the installation of considerable over-surface in clean condition, the maximum attainable velocity may reduce appreciably. This, in turn, will increase the tendency of fouling. By taking a lower fouling resistance, a smaller heat exchanger will be adequate, thus making it possible to apply a higher velocity and still stay within the limits of allowable pressure drop.

NOTE: The selection of lower fouling resistances should be done with due regard to the drive to longer periods between shutdowns.

4. FOULING RESISTANCE TABLES

Table	Title
1	Distillation units
2	Luboil plants
3	Hydroprocessing units
4	Conversion units
5	Ethylene plant
6	Ethylene oxide plant
7	Cumene plant
8	Phenol plant
9	Di-phenylol propane plant
10	Epikote plant
11	C ₃ = solvent plant
12	C ₄ = solvent plant
13	Butadiene plant
14	Sulfolane plant
15	Aromatics plant
16	Xylenes plant
17	Urea wax plant
18	Wax cracking unit
19	Luboil hydrocracking unit
20	Treating units
21	Liquefied natural gas plant
22	Values for water and steam

Table 1 DISTILLATION UNITS

Fluid	Fouling resistance m ² .K/W
<i>Crude distilling unit</i>	
Crude, waxy	0.57×10^{-3}
Crude, non-waxy	0.43×10^{-3}
Atmospheric Column overhead vapours	0.17×10^{-3}
Gasoline and lighter products	0.17×10^{-3}
Kerosine	0.21×10^{-3}
Light gas oil	0.25×10^{-3}
Heavy gas oil	0.25×10^{-3}
Long residue	0.57×10^{-3}
<i>High vacuum unit</i>	
Vacuum column overhead vapours	0.34×10^{-3}
Vacuum gas oil	0.25×10^{-3}
Spindle oil	0.25×10^{-3}
Light machine oil	0.25×10^{-3}
Medium machine oil	0.29×10^{-3}
Cylinder oil	0.34×10^{-3}
Dirty wash oil	0.86×10^{-3}
Short residue	0.86×10^{-3}

Table 2 LUBOIL PLANTS

Fluid	Fouling resistance m ² .K/W
<i>Propane deasphalting unit</i>	
Prediluted short residue	0.86 x 10 ⁻³
De-asphalted oil	0.34 x 10 ⁻³
De-asphalted oil/propane mixture	0.29 x 10 ⁻³
Asphalt/propane mixture	0.86 x 10 ⁻³
Asphalt	0.86 x 10 ⁻³
Propane	0.17 x 10 ⁻³
<i>Furfural extraction unit</i>	
Charge oil	0.34 x 10 ⁻³
Furfural	0.34 x 10 ⁻³
Pseudo-raffinate	0.51 x 10 ⁻³
Extract/furfural mixture	0.86 x 10 ⁻³
Wet furfural	0.86 x 10 ⁻³
Extract	0.51 x 10 ⁻³
Raffinate	0.25 x 10 ⁻³
Raffinate/furfural mixture	0.34 x 10 ⁻³
<i>MEK de-waxing unit</i>	
Solvent	0.17 x 10 ⁻³
Propane or ammonia	0.17 x 10 ⁻³
Waxy oil/solvent mixture	0.25 x 10 ⁻³
De-waxed oil/solvent mixture	0.25 x 10 ⁻³
Slack wax/solvent mixture	0.25 x 10 ⁻³
De-waxed oil, above 110°C	0.17 x 10 ⁻³
De-waxed oil, below 110°C	0.34 x 10 ⁻³
Slack wax	0.25 x 10 ⁻³
<i>Common facilities</i>	
Hot oil	0.34 x 10 ⁻³

(MEK = methyl ethyl ketone)

Table 3 HYDRO-PROCESSING UNITS

Fluid	Fouling resistance m ² .K/W
<i>Hydrodesulphurizer/Hydrotreater</i>	
Reactor feed	0.25 x 10 ⁻³
Reactor effluent	0.25 x 10 ⁻³
Stripper feed	0.25 x 10 ⁻³
Stripper overhead vapour	0.25 x 10 ⁻³
Drier overhead vapour	0.25 x 10 ⁻³
<i>Platformer</i>	
Reactor charge	0.29 x 10 ⁻³
Reactor effluent	0.29 x 10 ⁻³
Stabilized platformate	0.17 x 10 ⁻³
Stabilizer feed	0.17 x 10 ⁻³
Stabilizer overhead vapour	0.17 x 10 ⁻³
Hydrogen-rich gas	0.17 x 10 ⁻³

Table 4 CONVERSION UNITS

Fluid	Fouling resistance $\text{m}^2.\text{K}/\text{W}$
<i>Thermal cracking unit</i>	
Cracked gas oil	0.43×10^{-3}
Circulating reflux	0.57×10^{-3}
Cracked residues	$\leq 320 \text{ }^{\circ}\text{C}$
Cracked residues	$> 320 \text{ }^{\circ}\text{C}$
From short residue feed	1.72×10^{-3}
Special bitumen or cracked residues ex DTC	2.15×10^{-3}
Other cracked residue	2.86×10^{-3}
	1.72×10^{-3}
<i>Catalytic cracking unit</i>	
Light cycle oil	0.25×10^{-3}
Heavy cycle oil	0.29×10^{-3}
Slurry oil	0.57×10^{-3}
Gasoline	0.17×10^{-3}
<i>HF alkylation unit</i>	
Feed	0.17×10^{-3}
HF acid	0.17×10^{-3}
HF acid/Feed mixture	0.29×10^{-3}
Alkylate	0.17×10^{-3}
Depropanizer feed	0.17×10^{-3}
<i>Bitumen blowing unit</i>	
Short residue	0.86×10^{-3}
Bitumen	0.86×10^{-3}
Blown distillate	0.57×10^{-3}
Waste gas	0.57×10^{-3}

(DTC = Deep Thermal Conversion)

(HF = hydrofluoric acid)

Table 5 ETHYLENE PLANT

Fluid	Fouling resistance m ² .K/W
<i>Feed section</i>	
Gas oil feed	0.26 x 10 ⁻³
Naphtha feed	0.26 x 10 ⁻³
Quench oil	0.53 x 10 ⁻³
<i>Circulating quench media</i>	
Water	0.44 x 10 ⁻³
Light oil	0.35 x 10 ⁻³
Heavy oil	0.18 x 10 ⁻³
<i>Regeneration section</i>	
Regeneration gas (inlet)	0.18 x 10 ⁻³
Regeneration gas (outlet)	0.26 x 10 ⁻³
<i>Cracked gas compressor section</i>	
Compressed cracked gas	0.35 x 10 ⁻³
Fourth stage condensate	0.53 x 10 ⁻³
<i>Primary fractionator</i>	
Distillate stripper bottoms	0.53 x 10 ⁻³
Fuel oil	0.53 x 10 ⁻³
<i>Utilities</i>	
Hot oil	0.53 x 10 ⁻³
<i>Warm distillation section</i>	
Gasoline rerun column bottoms	0.53 x 10 ⁻³
Gasoline rerun column overheads	0.18 x 10 ⁻³
Depropanizer stripper overheads	0.18 x 10 ⁻³
Depropanizer rectifier bottoms	0.35 x 10 ⁻³
Depropanizer rectifier overheads	0.18 x 10 ⁻³
Debutanizer feed	0.26 x 10 ⁻³
Debutanizer bottoms	0.53 x 10 ⁻³
Debutanizer overheads	0.18 x 10 ⁻³
Propane/propylene splitter bottoms	0.26 x 10 ⁻³
Propane/propylene splitter overheads	0.18 x 10 ⁻³

ETHYLENE PLANT (continued)

Fluid	Fouling resistance m².K/W
<i>Refrigeration section</i>	
Propylene (refrigerant)	0.09 x 10 ⁻³
Ethylene (refrigerant)	0.09 x 10 ⁻³
<i>Cold distillation section</i>	
Acetylene (reactor outlet)	0.26 x 10 ⁻³
Demethanizer bottoms	0.26 x 10 ⁻³
Demethanizer overheads	0.18 x 10 ⁻³
Deethanizer bottoms	0.26 x 10 ⁻³
Deethanizer overheads	0.18 x 10 ⁻³
C ₂ splitter bottoms	0.26 x 10 ⁻³
C ₂ splitter overheads	0.18 x 10 ⁻³
Ethane product	0.26 x 10 ⁻³
Ethylene product	0.18 x 10 ⁻³

Table 6 ETHYLENE OXIDE PLANT

Fluid	Fouling resistance m ² .K/W
<i>Reactor fluid</i>	
Feed gas to reactor	0.17 x 10 ⁻³
Reactor product	0.34 x 10 ⁻³
Coolant separator overheads	0.17 x 10 ⁻³
<i>Ethylene oxide recovery section</i>	
CO ₂ absorber overheads	0.17 x 10 ⁻³
CO ₂ absorber feed gas	0.17 x 10 ⁻³
CO ₂ stripper tops	0.17 x 10 ⁻³
Ethylene oxide absorber feed	0.34 x 10 ⁻³
Lean absorbent	0.17 x 10 ⁻³
Ethylene oxide stripper feed	0.17 x 10 ⁻³
Ethylene oxide stripper bottoms	0.26 x 10 ⁻³
Quench bleed stripper bottoms	0.69 x 10 ⁻³
Glycol bleed reboiler	0.52 x 10 ⁻³
<i>Ethylene oxide purification section</i>	
Ethylene oxide stripper tops	0.26 x 10 ⁻³
Light ends column bottoms	0.17 x 10 ⁻³
Ethylene oxide dehydration column bottoms	0.17 x 10 ⁻³
Acetaldehyde column bottoms	0.17 x 10 ⁻³
Ethylene oxide (product)	0.26 x 10 ⁻³
Ethylene oxide purification column tops	0.34 x 10 ⁻³
Residual gas	0.17 x 10 ⁻³
<i>Glycol reaction and recovery section</i>	
Reactor feed	0.17 x 10 ⁻³
Reactor product	0.17 x 10 ⁻³
Concentrator column bottoms	0.17 x 10 ⁻³
Dehydrator column bottoms	0.17 x 10 ⁻³
Dehydrator column tops	0.085 x 10 ⁻³

ETHYLENE OXIDE PLANT (continued)

Fluid	Fouling resistance m ² .K/W
<i>Glycol purification section</i>	
Glycol column tops	0.17 x 10 ⁻³
Glycol recycle column bottoms	0.52 x 10 ⁻³
Glycol recycle column tops	0.17 x 10 ⁻³
DEG column bottoms	0.52 x 10 ⁻³
DEG column tops	0.17 x 10 ⁻³
DEG recycle column bottoms	0.52 x 10 ⁻³
DEG recycle column tops	0.17 x 10 ⁻³
TEG column bottoms	0.52 x 10 ⁻³
TEG column tops	0.52 x 10 ⁻³
<i>Glycol bleed recovery section</i>	
Glycol bleed flasher reboiler	0.52 x 10 ⁻³
Glycol bleed dehydration column bottoms	0.17 x 10 ⁻³
Glycol bleed dehydration column tops	0.17 x 10 ⁻³
Standard glycol purification column bottoms	0.52 x 10 ⁻³
Standard glycol purification column tops	0.34 x 10 ⁻³

DEG = diethylene glycol

TEG = triethylene glycol

Table 7 CUMENE PLANT

Fluid	Fouling resistance m ² .K/W
Feed (73% benzene + 8.8% C ₃ + 3.4% cumene + 5% propylene + 6% cyclohexane)	0.26 x 10 ⁻³
Mixture of recycle benzene and fresh PP (80% benzene + 8% cyclohexane + 8% PP + 4% cumene)	0.26 x 10 ⁻³
Rectifier overheads (61% benzene + 12% iC ₄ + 5% cyclohexane)	0.26 x 10 ⁻³
Depropanizer bottoms	0.26 x 10 ⁻³
Depropanizer tops	0.17 x 10 ⁻³
Recycle column bottoms	0.26 x 10 ⁻³
Recycle column tops	0.17 x 10 ⁻³
Cumene column bottoms (reboiler)	0.34 x 10 ⁻³
Cumene column bottoms (cooler)	0.17 x 10 ⁻³
Cumene column tops	0.17 x 10 ⁻³

(PP = propane/propylene)

Table 8 PHENOL PLANT

Fluid	Fouling resistance m ² .K/W
<i>Reactor section</i>	
Air (compressor intercooler)	0.17 x 10 ⁻³
Chillers refrigerant (propylene)	0.17 x 10 ⁻³
Cleavage product coolers (30% DMK + 46% phenol + by-products)	0.34 x 10 ⁻³
Concentrator of peroxides up to 55% (evaporators)	0.34 x 10 ⁻³
Concentrator of peroxides above 55% (evaporators)	0.86 x 10 ⁻³
Concentrator (condensers and chillers)	0.17 x 10 ⁻³
Cumene (99%)	0.17 x 10 ⁻³
Dimethyl ketone	0.17 x 10 ⁻³
Off gas	0.34 x 10 ⁻³
Oxidate	0.34 x 10 ⁻³
<i>Phenol distillation unit</i>	
Cleavage product preheaters	0.86 x 10 ⁻³
Crude acetone column bottoms	0.54 x 10 ⁻³
Crude phenol column bottoms	0.86 x 10 ⁻³
Pure phenol column bottoms	0.34 x 10 ⁻³
Pure phenol column tops	0.17 x 10 ⁻³
Cracker feed	0.86 x 10 ⁻³
<i>Dimethyl ketone distillation unit</i>	
DMK mixture (50% DMK + 25% cumene + 21% H ₂ O)	0.34 x 10 ⁻³
Top product (72% DMK + 13% acetaldehyde)	0.17 x 10 ⁻³
Pure DMK column bottoms (48% cumene + 41% H ₂ O)	0.34 x 10 ⁻³
Pure DMK column tops (99% DMK)	0.17 x 10 ⁻³
<i>Cumene distillation unit</i>	
Any concentration of cumene and alpha methyl styrene	0.17 x 10 ⁻³

(DMK = dimethyl ketone)

Table 9 DI-PHENYLOL PROPANE PLANT

Fluid	Fouling resistance m ² .K/W
Reactor feed (96% phenol + 4% DMK)	0.34 x 10 ⁻³
Reactor product	0.34 x 10 ⁻³
Dehydration column bottoms (96% phenol + 4% DPP + traces of HCl)	0.43 x 10 ⁻³
1st and 2nd stage flasher bottoms	0.86 x 10 ⁻³
1st and 2nd stage phenol flasher tops	0.86 x 10 ⁻³
Brine (10% NaCl + 5% phenol + 85% H ₂ O)	0.34 x 10 ⁻³
DIPE column bottoms	0.34 x 10 ⁻³
DIPE column tops (85% DIPE + 15% CH ₃ SH)	0.17 x 10 ⁻³
Pure phenol flash column tops	0.17 x 10 ⁻³
Flashed phenol evaporators	0.22 x 10 ⁻³
Pure DIPE	0.17 x 10 ⁻³
HCl stripper bottoms (22% HCl + 78% H ₂ O)	0.17 x 10 ⁻³
HCl stripper tops (60% HCl + 40% H ₂ O)	0.17 x 10 ⁻³

(DMK = dimethyl ketone)

(DPP = diphenyol propane)

(DIPE = di-isopropyl ether)

Table 10 EPIKOTE PLANT

Fluid	Fouling resistance m ² .K/W
LIQUID EPIKOTE	
<i>Reactor section</i>	
Reactor overheads	0.86 x 10 ⁻³
Epichlorohydrin	0.25 x 10 ⁻³
<i>Solvent removal section</i>	
Resins solution	0.17 x 10 ⁻³
MIBK condenser	0.86 x 10 ⁻³
MIBK aftercondenser	0.25 x 10 ⁻³
SOLID EPIKOTE	
<i>Washing section</i>	
Clarified solution	0.86 x 10 ⁻³
Evaporator feed (preheater)	0.86 x 10 ⁻³
Evaporator overhead condenser	0.25 x 10 ⁻³
MIBK (preheater)	0.25 x 10 ⁻³
Reactor vent condenser	0.25 x 10 ⁻³
MIBK stripper condenser	0.25 x 10 ⁻³

(MIBK = methyl isobutyl ketone)

Table 11 C₃= SOLVENT PLANT

Fluid	Fouling resistance m ² .K/W
<i>Crude/PA unit</i>	
Reactor feed (81% C ₃ = +12% H ₂ O + 7% IPA)	0.21 x 10 ⁻³
Reactor product (77% C ₃ = + 10% H ₂ O + 13% IPA)	0.29 x 10 ⁻³
<i>IPA recovery unit</i>	
Pure IPA	0.17 x 10 ⁻³
Mixture (20% IPA + 10% H ₂ O + 70% benzene)	0.17 x 10 ⁻³
Mixtures of water and IPA at any %	0.17 x 10 ⁻³
Water (recirculation)	0.17 x 10 ⁻³
<i>DMK conversion unit</i>	
Feed (87.5% IPA + 12.5% H ₂ O) preheaters	0.17 x 10 ⁻³
Product (47% DMK + 21% IPA + H ₂ O) coolers	0.17 x 10 ⁻³
<i>DMK recovery unit</i>	
Pure DMK	0.17 x 10 ⁻³

(IPA = isopropyl alcohol)

(DMK = dimethyl ketone)

Table 12 C₄= SOLVENT PLANT

Fluid	Fouling resistance m ² .K/W
<i>Crude SBA unit</i>	
Mixture butane/butylene (80% C ₄ -0 + 20% C ₄ =-2)	0.25 x 10 ⁻³
Bottom product (38% C ₄ -0 + 50% SBE + 12% H ₂ SO ₄)	0.57 x 10 ⁻³
Reactor coolers (66% C ₄ (total) + 34% H ₂ SO ₄)	0.43 x 10 ⁻³
Debutanizer tops (59% C ₄ = + 41% C ₄ -0 + traces of H ₂ SO ₄ and polymers)	0.17 x 10 ⁻³
Debutanizer bottoms (55% SBA + 37% H ₂ O + 8% SBE)	0.17 x 10 ⁻³
Caustic evaporator (58% H ₂ O + 42% caustic)	0.17 x 10 ⁻³
<i>H₂SO₄ concentration unit</i>	
Acid coolers (72% H ₂ SO ₄ + 28% H ₂ O)	0.43 x 10 ⁻³
<i>SBA recovery unit</i>	
Any mixture of SBA and water	0.17 x 10 ⁻³
Mixture (60% SBA + 40% polymers)	0.43 x 10 ⁻³
<i>MEK conversion unit</i>	
Feed (pure SBA)	0.17 x 10 ⁻³
Product (71% MEK + 26% SBA)	0.25 x 10 ⁻³
<i>MEK recovery unit</i>	
Light ends column tops (42% IPE + 55% MEK)	0.17 x 10 ⁻³
Finishing column bottoms (93% SBA + 5% polymers)	0.25 x 10 ⁻³
Finishing column tops (pure MEK)	0.25 x 10 ⁻³

(SBA = secondary butyl alcohol)

(SBE = secondary butyl ether)

(IPE = isopropyl ether)

(MEK = methyl ethyl ketone)

Table 13 BUTADIENE PLANT

Fluid	Fouling resistance m ² .K/W
Pure butadiene	0.34 x 10 ⁻³
Butane/butylene	0.34 x 10 ⁻³
Mixture of butane/butylene/butadiene (condensing)	0.34 x 10 ⁻³
Mixture of butane/butylene/butadiene (boiling)	0.86 x 10 ⁻³
Mixture of butadiene and solvent (ACN)	0.86 x 10 ⁻³
Mixture of ACN and water	0.68 x 10 ⁻³
Heavy ends (12% butadiene + 30% VAC + 17% C ₄ = + 15% iC ₄ =)	0.34 x 10 ⁻³
Fractionation bottom product	0.86 x 10 ⁻³

(ACN = acetonitrile)

(VAC = vinyl acetylene)

Table 14 SULFOLANE PLANT

Fluid	Fouling resistance m ² .K/W
Stripper bottoms	0.17 x 10 ⁻³
Stripper tops	0.17 x 10 ⁻³
Recovery column bottoms	0.17 x 10 ⁻³
Recovery column tops	0.17 x 10 ⁻³
Raffinate	0.17 x 10 ⁻³
Lean solvent (Sulfolane)	0.25 x 10 ⁻³
Fat solvent (Sulfolane + hydrocarbons)	0.25 x 10 ⁻³
Extract (aromatics)	0.17 x 10 ⁻³
Mixture of Sulfolane and water (water evaporator)	0.25 x 10 ⁻³
Sulfolane regenerator reboiler*	2.46 x 10 ⁻³
Water stripper reboiler	0.43 x 10 ⁻³

NOTE*: Steam injection into the regenerator can reduce fouling resistance.

Table 15 AROMATICS PLANT

Fluid	Fouling resistance m ² .K/W
Benzene	0.17 x 10 ⁻³
Toluene	0.17 x 10 ⁻³
Xylenes	0.17 x 10 ⁻³
Heavier aromatics	0.17 x 10 ⁻³
Any mixture of benzene/toluene/ xylenes/heavier aromatics	0.29 x 10 ⁻³

Table 16 XYLENES PLANT

Fluid	Fouling resistance m ² .K/W
<i>Orthoxylene distillation unit</i>	
Feed (20% EB + 16% PX + 32% MX + 11% OX + C ₉)	0.25 x 10 ⁻³
Xylenes splitter bottoms (13% PX + 66% OX + C ₉ aromatics)	0.25 x 10 ⁻³
Xylenes splitter tops (20% EB + 24% PX + 53% MX + 1.4% OX)	0.17 x 10 ⁻³
OX recovery column bottoms (6% OX + C ₉)	0.25 x 10 ⁻³
OX recovery column tops (97% OX)	0.17 x 10 ⁻³
<i>Crystallization unit</i>	
Paraxylene	0.17 x 10 ⁻³
Any mixture of MX, PX and EB	0.17 x 10 ⁻³
Reboilers of strippers	0.25 x 10 ⁻³
<i>Isomerization unit</i>	
Any mixture of OX, MX, PX and EB	0.17 x 10 ⁻³
Reboilers of strippers	0.25 x 10 ⁻³

(EB = ethyl benzene)

(PX = paraxylene)

(MX = metaxylene)

(OX = orthoxylene)

Table 17 UREA WAX PLANT

Fluid	Fouling resistance m ² .K/W
Reactor vapour (98.5% DCM + 1.5% H ₂ O)	0.17 x 10 ⁻³
Stripper overheads (72% DCM + 28% H ₂ O)	0.17 x 10 ⁻³
Drier overheads	0.17 x 10 ⁻³
Decomposer vapour	0.17 x 10 ⁻³
Concentrator vapour (90% H ₂ O + 9% DCM + traces of NH ₃ + CO ₂ + air)	0.34 x 10 ⁻³
Vent gas (96% DCM + CO ₂ + NH ₃ + air + H ₂ O)	0.17 x 10 ⁻³
Decomposer circulation (91% wax + 3% oil + 6% DCM)	0.34 x 10 ⁻³
Paraffin stripper feed (91% wax + 3% oil + 6% DMK)	0.43 x 10 ⁻³
Drier column feed (25% DCM + 75% oil)	0.34 x 10 ⁻³
High pressure column preheaters	0.34 x 10 ⁻³
Low, medium and high pressure columns evaporators	0.34 x 10 ⁻³
Oil stripper feed (10% DCM + 90% oil)	0.34 x 10 ⁻³

(DCM = dichloromethane)

(DMK = dimethyl ketone)

Table 18 WAX CRACKING UNIT

Fluid	Fouling resistance m ² .K/W
Wax cracker residue	0.43 x 10 ⁻³
Fractionator overhead vapour	0.43 x 10 ⁻³
Stabilizer feed	0.25 x 10 ⁻³
Stabilizer bottom product	0.25 x 10 ⁻³
Stabilizer top product	0.17 x 10 ⁻³
C ₆ /C ₈ column bottoms	0.25 x 10 ⁻³
C ₆ /C ₈ column tops	0.17 x 10 ⁻³
C ₈ /C ₁₀ column bottoms	0.25 x 10 ⁻³
C ₈ /C ₁₀ column tops	0.17 x 10 ⁻³
C ₁₀ column bottoms	0.25 x 10 ⁻³
C ₁₀ column tops	0.17 x 10 ⁻³
C ₁₁ /C ₁₂ column bottoms	0.25 x 10 ⁻³
C ₁₁ /C ₁₂ column tops	0.17 x 10 ⁻³
C ₁₃ /C ₁₄ column bottoms	0.25 x 10 ⁻³
C ₁₃ /C ₁₄ column tops	0.17 x 10 ⁻³
C ₁₅ /C ₁₈ bottoms (reboiler)	0.34 x 10 ⁻³
C ₁₅ /C ₁₈ product (cooler)	0.25 x 10 ⁻³
Slops C ₆ /C ₁₈	0.25 x 10 ⁻³

Table 19 LUBOIL HYDROCRACKING UNIT

Fluid	Fouling resistance m ² .K/W
<i>Shell side</i>	
Charge/effluent heat exchangers and combined effluent air cooler. Feedstock:	
WD-60	0.25 x 10 ⁻³
WD-90	0.21 x 10 ⁻³
WD-95	0.25 x 10 ⁻³
WD-130	0.29 x 10 ⁻³
WD-160	0.29 x 10 ⁻³
DAO	0.34 x 10 ⁻³
<i>Tube side</i>	
Charge/effluent heat exchangers and combined effluent air cooler. Feedstock:	
WD-60	0.21 x 10 ⁻³
WD-90	0.21 x 10 ⁻³
WD-95	0.21 x 10 ⁻³
WD-130	0.25 x 10 ⁻³
WD-160	0.25 x 10 ⁻³
DAO	0.29 x 10 ⁻³
Heat exchanger equipment for fresh gas and/or recycle gas	0.19 x 10 ⁻³
Hot recycle gas air cooler	0.29 x 10 ⁻³

(WD = waxy distillate)

(DAO = de-asphalting oil)

Table 20 TREATING UNITS

Fluid	Fouling resistance m ² .K/W
GAS	
<i>SULFINOL process</i>	
Fat sulfinol : tube side	0.26×10^{-3}
Lean sulfinol : shell or tube side	0.26×10^{-3}
Overhead vapours (mainly steam condensation) shell or tube side	0.17×10^{-3}
Reclaimer vapours (steam + sulfinol): shell or tube side	0.26×10^{-3}
Solvent in PFHE	0.09×10^{-3}
<i>ADIP/SCOT process</i>	
Fat ADIP : tube side	0.36×10^{-3}
Lean ADIP : shell or tube side	0.36×10^{-3}
Overhead vapour (mainly steam condensation)	0.17×10^{-3}
Process gas cooler (tube side)	0.34×10^{-3}
<i>CLAUS process</i>	
Process gas (WHB, tube side)	0.52×10^{-3}
Process gas (S-cond., tube side)	0.52×10^{-3}
Acid gas feed (preheater, tube side)	0.34×10^{-3}
Sour Water Stripper offgas (preheater, tube side)	0.34×10^{-3}
Liquid sulphur (steam coils)	0.52×10^{-3}
LIQUID	
<i>Sour water stripper</i>	
Sour water	0.34×10^{-3}
Stripped water	0.34×10^{-3}
<i>Desalter</i>	
Stripped sour water	0.34×10^{-3}

(ADIP = aqueous solution of DIPA)

(DIPA = di-isopropanol amine)

Table 21 LIQUIFIED NATURAL GAS PLANT

Fluid	Fouling resistance m ² .K/W
<i>Natural Gas Circuit</i>	
Wet Natural Gas	0.17×10^{-3}
Dehydrated Natural Gas	0.09×10^{-3}
<i>Mixed Refrigerant Circuit</i>	
Mixed Refrigerant	0.09×10^{-3}
<i>Propane Circuit</i>	
Propane	0.09×10^{-3}
<i>Fractionation unit</i>	
Hydrocarbon liquids	0.17×10^{-3}
Heat Transfer Fluid	0.17×10^{-3}
Hot water	0.25×10^{-3}
Fuel gas	0.17×10^{-3}
<i>Sulfinol process</i>	
Fat sulfinol : tube side	0.26×10^{-3}
Lean sulfinol : shell or tube side	0.26×10^{-3}
Overhead vapours (mainly steam): shell or tube side	0.17×10^{-3}
Reclaimer vapours (steam + sulfinol): shell or tube side	0.26×10^{-3}
Solvent in PFHE	0.09×10^{-3}

Table 22 VALUES FOR WATER AND STEAM

Fluid	Fouling resistance $\text{m}^2.\text{K/W}$
Clear sea water	0.25×10^{-3}
Dirty sea water	0.34×10^{-3}
Brackish water	0.34×10^{-3}
Dirty brackish water	0.52×10^{-3}
Fresh treated water	0.25×10^{-3}
Non-treated fresh water	0.34×10^{-3}
Stripped water	0.34×10^{-3}
Sour water	0.34×10^{-3}
Closed recirculating cooling water system	0.25×10^{-3}
Open recirculating cooling water system	0.29×10^{-3}
Steam + (sour) condensate	0.17×10^{-3}
Steam	0.085×10^{-3}

5. REFERENCES

In this DEP, reference is made to the following publications:

NOTE: Unless specifically designated by date, the latest edition of each publication shall be used, together with any amendments, supplements or revisions thereto.

SHELL STANDARDS

Index to DEP publications and standard specifications	DEP 00.00.05.05-Gen.
---	----------------------

Shell and tube heat exchangers (amendments/supplements to TEMA standards)	DEP 31.21.01.30-Gen.
--	----------------------

APPENDIX 1 COOLING WATER DATA

Table 1-1 COOLING WATER VELOCITIES (TUBE SIDE)

Tube material*	Preferred velocity for design m/s	Velocity	
		Minimum	Maximum
1. Aluminium brass, B111-C68700	1.5	1.0	2.2
2. Copper nickel (90 Cu-10 Ni), B111-C70600	1.8	1.0	2.5
3. Copper nickel (70 Cu-30Ni), B111-C71640	2.1	1.0	3.0
4. Carbon steel	1.5	1.0	2.2
5. Stainless steel	2.5	2.0	4.5
6. Titanium	3.5	2.5	5.0

NOTE*: Materials selection shall be done in consultation with the materials and corrosion engineer

Table 1-2 COOLING WATER FRICTIONAL PRESSURE DROP (TUBE SIDE)

Tube material	FRICTIONAL PRESSURE DROP (Pa/m)		
	For preferred velocity	For minimum velocity	For maximum velocity
1. Aluminium brass, B111-C68700	1 800	900	3 600
2. Copper nickel (90 Cu-10 Ni), B111-C70600	2 500	900	4 500
3. Copper nickel (70 Cu-30Ni), B111-C71640	3 300	900	6 100
4. Carbon steel	1 940	960	3 800
5. Stainless steel	4 430	3 000	12 400
6. Titanium	7 200	4 000	13 400

Pressure drop is calculated for a tube OD of 19.05 mm with wall thickness in accordance with DEP 31.21.01.30-Gen. Wall thickness of titanium tubes = 0.914 mm (SWG 20).

The frictional pressure drop on tube side can be estimated by using the above table. This pressure drop still needs correcting for inlet, contraction, turnaround, expansion and outlet losses.